Lucas Sayı Dizisinin Entropi Yönünden İncelenmesi
نویسندگان
چکیده
Lucas sayı dizisi, ilk iki terimi L_1=1 ve L_2=3 olmak üzere L_n=L_(n-1)+L_(n-2) indirgeme bağıntısı ile elde edilir. Bu çalışmada bilgi entropisi yönünden incelendi. Sistemlerin entropi değerleri hesaplanırken üçgenlerinden yararlanmak olağan bir uygulamadır. Fibonacci sayıları Pascal üçgeninden edilebileceğinden, bu üçgenlerin hesaplandı. Elde edilen sonuçlar Leibniz’in harmonik üçgeniyle kıyaslandı.
منابع مشابه
Ülkemizdeki Trafik Kazalarının Zamansal Değişimlerinin İncelenmesi
There is an imperative need to understand how, where and when traffic accidents occur in order to develop appropriate accident reduction strategies. An improved understanding of the location, time and reasons for traffic accidents makes a significant contribution to preventing them. Traffic accident occurrences have been extensively studied from different spatial and temporal points of view usi...
متن کاملLucas-sierpiński and Lucas-riesel Numbers
In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.
متن کاملLucas News
The RSL continues to evolve and two faculty recruitments are in progress for molecular imaging and cognitive neuroimaging. These are major initiatives for the Department and the Lab. Molecular imaging is broadly defined as the visualization of in vivo structures that are identified on the molecular level by genetic expression or some other tagging means. The NIH has recently highlighted this fi...
متن کاملLucas Primitive Roots
is called the characteristic polynomial of the sequence U. In the case where P = -g = 1, the sequence U is the Fibonacci sequence and we denote its terms by F0, Fl9 F2, ... . Let p be an odd prime with p\Q and let e > 1 be an integer. The positive integer u = u(p) is called the rank of apparition of p in the sequence U if p\Uu and p\Um for 0 < m < u; furthermore, u = u(p) is called the period o...
متن کاملFibonacci-Lucas densities
Both Fibonacci and Lucas numbers can be described combinatorially in terms of 0− 1 strings without consecutive ones. In the present article we explore the occupation numbers as well as the correlations between various positions in the corresponding configurations. (2000) Mathematics Subject Classification: 11B39, 05A15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europan journal of science and technology
سال: 2022
ISSN: ['2148-2683']
DOI: https://doi.org/10.31590/ejosat.1083933